被垃圾逼疯的上海人最近成为其他省市的快乐源泉,贡献了诸多精彩段子。不过不要紧,忙着“哈哈哈”的网友很快得知,到2020年底,包括北京、天津、上海、重庆、深圳等先行先试的46个重点城市,要基本建成垃圾分类处理系统。
一时间,垃圾分类成为热议话题,也催生了“智能垃圾经济”的新模式和新的成长空间。根据方正证券消息,仅生活垃圾分类就会为市场带来1万亿元左右的增量,其相关板块的利润增速或空间弹性将至少在30%。
这个巨大的蛋糕已经被AI注意到。垃圾分类,AI大有可为。
你是什么垃圾——AI如何判断?
先行开始垃圾分类的上海,目标是到2020年打造60个人工智能深度应用场景。7月2日,上海发布第二批人工智能应用场景需求,包括生活垃圾分类应用等共计28个场景。上海城投环境(集团)有限公司科技信息部主管陶俊杰表示,“如果前端分得不好可能导致后面终端处理的问题,因此发布的场景应用需求第一块就是针对小区垃圾前端的识别。”
日常中,每个类别的垃圾往往包含了各式各样的内容,仅凭经验,人们在分类投放时难免出现偏差。得益于AI的赋能,垃圾分类识别正变得精准高效。
AI用于垃圾分类,业界早有过相关的讨论,主要有三种方案类型:第一种方案,是把垃圾的相关信息制成表格化数据,然后用传统的机器学习方法实现分类;第二种方案,把所有的垃圾分类信息做成知识图谱,每一次查询就好像翻字典一样查阅信息;第三种方案,借助深度学习方法,来对垃圾进行识别和分类。例如每次给一张垃圾的图片,让模型识别出这是属于哪一种类别的:干垃圾、湿垃圾、有害垃圾还是可回收垃圾。
第三种方案正在成为主流。并由此拓展出两种分类方式:一种是单一目标分类,即对整张图片进行分类,为图片给出唯一的分类标签;另一种是多目标检测分类,是对图片中的多种垃圾进行定位及单独分类。前者在技术上相对容易实现,近期比较热门的几个手机垃圾分类APP都是使用这种技术。后者虽然更为实用,但研发难度更大。
太古计算总经理陈伟认为,在深度学习出现之前,可变形部件模型(DPM)一直是流行的目标检测方法。深度学习出现后,以R-CNN、Fast R-CNN、Faster R-CNN为代表的两阶段算法和以YOLOv1-3、SSD、RetinaNet为代表的单阶段算法成为主流。前者是先由算法生成一系列待检测目标的候选框,再通过卷积神经网络进行候选框的分类;后者则不用产生候选框,直接将目标边框定位的问题转化为回归问题处理。
太古计算目前正在进行垃圾分类识别相关方案的开发,采用深度学习技术训练,产品可实现上千种类别识别。据展示图例来看,识别精准度较高。
浙江是全国唯一一个在农村展开垃圾分类的省份。在最初的推行阶段,村民面临着没有垃圾分类习惯、不清楚如何分类等难题,往往厨余垃圾、残砖破瓦,甚至农药瓶等都混在一起,给后续处理带来很大难度。而在金华永康南部的某个村子,在采用了海康威视的智能摄像机和智慧音柱的方案后,情况有了明显好转。
智能警戒摄像机可以准确检测到监控范围内的人体和车辆,当摄像机发现是有人经过划定好的投递垃圾区域时,就会传递信号给智慧音柱,随后音柱就开始自动播放预先储存的音频文件,如:垃圾请分类入桶,餐厨垃圾扔绿桶,其他垃圾扔黄桶,从而提醒村民进行垃圾分类投放。由于摄像机内置有智能检测算法,当经过的是猫狗等动物时,摄像机可以判断经过的不是人体,因此不会受到干扰而误导音柱。
平安智慧也看上了“垃圾生意”,正在针对垃圾分类全流程搭建智慧分析管理平台。据其智慧垃圾分类项目负责人表示,政府在进行生活垃圾管理时会遇到一些难点:如统筹少、数据分散、监管主体增多、考核难等,如何为其提供系统性管理平台是平安的研究方向。
根据规划,在这一平台中,三大层次递进发挥作用:底层为大数据支撑体系,构建了智能调度模型、全流程考核评估模型以及检查点抽样模型;中层的多功能模块则包括从投放、收运到处理的全程分类,以及用以实效评估的全套督导考核体系;前段则以统筹型数据作展示。简言之,关于垃圾从源头到末端的定量监管、各环节工作的评估与绩效,平安智慧希望在这一个分析管理平台上得以实现。未来,这一平台将结合物联网、视频采集技术,精准追溯各环节的垃圾投放、收运,杜绝混装等违规操作,并成为处罚的依据。